
51

S E S 2 0 1 5
E l e v e n t h S c i e n t i f i c C o n f e r e n c e w i t h I n t e r n a t i o n a l P a r t i c i p a t i o n

S P A C E , E C O L O G Y , S A F E T Y
4 - 6 November 2015, Sofia, Bulgaria

DEVELOPMENT CLASSES OF OBJECTS' DESCRIPTORS FOR SPACE

MISSIONS SIMULATION

Atanas Atanassov

Space Research and Technology Institute – Bulgarian Academy of Sciences
e-mail: At_M_Atanassov@yahoo.com

Keywords: parallel calculations, pool of threads model; multi-physic models simulations.

Abstract: Object-oriented programming is powerfull modern approach for development of flexible

programming tools. Some classes of objects applied in program system for space mission and simulation of
experiments are presented. The aim of development of such classes of objects is approaching flexibility related to
calculation’s organization. Every class represents pattern for creation of objects’ descriptors. Code fragments and
application of developed classes of objects are shown. Classes of objects for description of ordinary differential
equation systems integrators, situation problems solvers, initial values problems union of parallel tools and other
are developed on the present stage.

РАЗРАБОТКА НА КЛАСОВЕ ОТ ДЕСКРИПТОРИ НА ОБЕКТИ ЗА

СИМУЛИРАНЕ НА КОСМИЧЕСКИ МИСИИ

Атанас Атанасов

Институт за космически изследвания и технологии – Българска академия на науките
e-mail: At_M_Atanassov@yahoo.com

Резюме: Обектното програмиране е мощен съвременен подход за разработка на гъвкави
програмни средства. Разгледани са няколко класа обекти използвани в рамките на рограмна система
за симулации на космически мисии и експерименти. Целта на разработката на тези обекти е да се
постигне гъвкавост по отношение на организацията на изчисленията. В случая всеки клас
представлява шаблон за създаване на дескриптори на обекти . Показани са кодови фрагменти и
реализации за използване на разгледаните обекти. На този етап са разработени класове за описание
на интегратори на системи от диференциални уравнения, процесори за решаване на ситуационни
задачи, обединения на паралелни инструменти и други.

Introduction

Technological developments of computers provide more calculation powers for scientist-
designer in field of space investigation. This allows development of more complex models and
execution in details of simulations without necessaries from special deduced computer architectures.

One modern concept for complex and reusable software development is based on object
oriented programing approach. Object programing offers possibilities for broader abstractions related
to new user-defined data types and applied appropriate data processing methods. Every object has
specific properties which distinguishe it from other objects. These properties could be described
through complex user-defined type. A simulation model formed on the base of some types of objects is
possible to be executed numerous times through different changeable scenarios.

The better using of growing calculation power could be achieved through increasing flexibility
of developing software and development of possibilities for easily definition of new tasks in the frames
of appropriated objects field.

Algorithms and program system for multi-satellite missions simulation is under development in
STIL-BAS, branch in Stara Zagora. The recently improving of the system flexibility and possibilities for
simulations based on complex physical-mathematical models are shown in the present report.

Basic tasks in the frame of the program system for space experiments’ simulation

The basic tasks provided for solving was [1]:
- Numerical integration of satellites motion equations.

mailto:At_M_Atanassov@yahoo.com
mailto:At_M_Atanassov@yahoo.com

52

- Calculation of different geometrical and physical parameters of the environment along
the orbits.

- Situation analysis - calculation of time intervals appropriated for satellite measurements
according to specific constraints.

- Active satellite experiments and physical processes simulation at appropriate parts of
orbits, according to previously executed situation analysis.

- Satellite operations scheduling.
- Visualization of results and simulated scenes.
- Writing of obtained results.

The organization of calculations comprising different tasks from listed above types was based
on static scheme, connected with consecutively execution of these one.

Two parallel tools- ordinary differential equations systems integrator [2] and situation problems
solver [3] was developed in the course of space missions’ simulation system development. Motion
equation systems of one or more classes of space objects (satellites, space debris, charged particles
and neutral or charged dust particles) could be solved through starting numerous of actual integrators.

For instance, a set of situation problems could be solved with group of satellite and other set
of situation problems with space debris. The both sets of situation problems could be solved
simultaneously in parallel trough starting more than one actual situation problem solver. These actual
integrators and solvers could be executed simultaneously through “union of pools of threads” program
model [4]. The applying of this model demands from application of more flexible schemes for
calculation scenarios definition and control of their execution.

State of the problem
The aim of the present work is to present some user-defined types, which could be used for

flexible definition of calculation tasks and their execution. Classes of objects- descriptors heaving such
user-defined types could be created. Definition of complex and various versions of simulations are
achieved via these classes of objects.

Development of some user-defined types

a). Type “parallel solvers”
This user-defined type serves as object-descriptors for creation of parallel calculation tools

based on “pool of threads” program model. The definition of this type is shown on figure 1a.

Fig. 1. (a) parallel solvers type definition; (b) Initial values problem type definition

The components of user-defined type pool_par are: num_threads - containing number of the

threads, ha_race - handled of the event for synchronization between threads when tasks are got from
input task queue, counter_adr - counter address for countering solved tasks, pool_par_adr - address
of pool of threads parameters and granulation - control parameter pointing the rate of breaking up
entire task into smaller tasks.

This pool_par type could be used for descriptors of different solvers – on this stage these are
integrators of ordinary differential equation systems and processors for situation problems’ solvers.

b). Type “initial values problems”
The type IVP_par contains various attributes describing an initial values problem (fig. 1b).

Character type attribute “name” contains the name of IVP. The attribute integ_index contains serial

 type pool_par
 sequence
 UNION
 MAP
 integer num_threads
 integer ha_race
 integer counter_adr
 integer pool_par_adr
 integer granulation
 END MAP
 MAP
 ! integer union_atr(2)
 END MAP
 END UNION
 end type pool_par (a)

 type IVP_par
 character name*20
 integer integ_index ! serial order in the class
 integer num_objects
 integer t_adr,dt_adr
 integer xvn_adr,xvk_adr,eps_adr
 integer adr_Grv_model,len_Grv_model
 integer transfer_data_adr,work_data_adr
 end type IVP_par

 (b)

53

order of pool of threads which represents ordinary differential equation systems integrator among all
objects in the class. The next variable num_objects indicate the number of all objects which motions
could be integrated. Attributes t_adr and dt_adr contain addresses of variables, where time and step
of time are stored. Analogously the next lines contain addresses of coordinates and tolerances data
about all objects, address of array containing information about perturbations for each object and
length of element of the array. The last line contains addresses of working arrays which are necessary
for integrator.

c). Type “situation problems”
The type SitProblems contains different attributes related to situation problems solving (fig.

2). The first two attributes contain order numbers of situation processor and initial value problem as
members in respective classes. num_objects present the number of objects (satellites),
max_num_sit and num_sci_prob determine the size of array, sit_prob contains situation problems
having address in addr_sit_prob.

Fig. 2. User-defined type SitProblems contains attributes for description of situation problems

d). Type “union of pools of threads”
The user defined type PoolThUnion (fig. 3a) represents template for descriptor of pools of

threads union. The first attribute num_threads contains sum of threads for all pools. The second attribute
union_atr contains address of array which contains all control parameters for union of pools [4].

Fig. 3. (a) this user-defined type describe “pools of threads union” objects; (b) type for objects “trajectory
calculations”

e). Type “trajectory calculations”
This type (fig. 3b) provides calculation of various quantities from geometric and physical

nature along the orbit. These quantities are calculated on every step in the time, after objects motion
integration. The obtained results could be used for situation analysis or simulations. The type
TrajParam contains information about number of objects, address of calculations control structure and
address of structure containing calculated quantities from models.

The access to classes’ descriptors from random point of the program is ensured trough
common named areas. Every area contains current size and address of the respective class (fig. 4a,
4b).

Creation of classes of objects

When one structural variable from given user defined type receives values of his components
we can accept that object is created. The members of given class are objects with same types.

All of above described user defined types serve for objects- descriptors creation, each of them
belonging to respective class. An essential parts of descriptor’s attributes contain meta-data
addresses of the real data and their dimensions. These meta-data are determined in the course of
tasks definition which will be solved and preceded inserting of particular data. When the values of all
attributes of one structured variable are defined, these variables are submitted to subroutine for object
creation and adding to corresponding class.

 type SitProblems
 integer pool_index ! index of the pool in a descriptor - class
 integer IVPs_index
 integer num_objects ! number of objects in conected IVP
 integer max_num_sit ! maximal number of situation conditions for all situation problems
 integer num_sci_prob ! number of situation problems
 integer addr_sit_prob ! address of situation 2D array containing situation problem
 ! definitions- each column contains situation problem
 integer addr_xvn,addr_xvk
 integer TrParam_adr ! TrParam- contains calculated parameters along the orbit
 end type SitProblems

 type PoolThUnion
 integer num_threads
 integer union_atr(2)
 end type PoolThUnion

 (a)

 type TrajParam
 integer num_objects
 integer trj_par_
 end type TrajParam

 (b)

54

Fig. 4. a). Interface of subroutine; b) and c). Variants for calling the subroutine according to object type. Illustration
of polymorphism is shown.

The subroutine add_object (fig. 4b, c) accepts objects and inserts them in respective class.

One new class of descriptors is created during the first call of the subroutine add_object with actual
parameters - object of given type. The subroutine has polymorphic abilities and accepts all different
objects according to their user-defined types. This is approached trough appropriate interface and
description of actual parameters shown on figure 4.

common /c_IVPs/num_IVPs,IVPs_descriptor_adr1
 …
 AI_1%num_threads = num_threads; AI_1%thread_par_adr= thread_par_adr;
 AI_1% ha_race = ha_1; AI_1%counter_adr = LOC(AI_1_glb_counter)
 AI_1%granulation = 1
CALL add_object(num_AIs,AIs_descriptor_adr,AIs_descriptor_adr,AI_1)
 (b)

INTERFACE
 SUBROUTINE add_object(dimension, AIs_descriptor_adr, AIs_descriptor_adr_new, AI_param, &
 IVPs_descriptor_adr, IVPs_descriptor_adr_new, IVP_param, &
 TrPas_descriptor_adr,TrPas_descriptor_adr_new,TrPar_param, &
 StPrb_descriptor_adr,StPrb_descriptor_adr_new,StPrb_param, &
 UsPTh_descriptor_adr,UsPTh_descriptor_adr_new,Union_param)
 integer dimension
 integer, optional :: AIs_descriptor_adr, AIs_descriptor_adr_new, &
 IVPs_descriptor_adr, IVPs_descriptor_adr_new, &
 TrPas_descriptor_adr,TrPas_descriptor_adr_new, &
 StPrb_descriptor_adr,StPrb_descriptor_adr_new, &
 UsPTh_descriptor_adr,UsPTh_descriptor_adr_new
 type pool_par
 integer num_threads,ha_race,counter_adr,thread_par_adr granulation
 end type pool_par
 type (pool_par), optional :: AI_param

 type IVP_par
 character name*20
 integer integ_index,num_objects,t_adt,dt_adr,
 integer xvn_adr,xvk_adr,eps_adr,adr_Grv_model,len_Grv_model
 integer transfer_data_adr,work_data_adr
 end type IVP_par
 type (IVP_par), optional :: IVP_param

 type TrajParam
 integer num_objects ! number of obects
 integer trj_par_adr ! address of trajectory parameters arry for one IVP
 end type TrajParam
 type (TrajParam), optional :: TrPar_param

 type SitProblems
 integer sit_solv_index,IVPs_index
 integer num_objects,max_num_sit,num_sci_task,addr_sit_prob
 integer addr_xvn,addr_xvk,TrParam_adr
 end type SitProblems
 type (SitProblems), optional :: StPrb_param

 type PoolThUnion
 integer num_threads
 integer union_atr(2)
 end type PoolThUnion
 type (PoolThUnion), optional :: Union_param
 END SUBROUTINE add_object
END INTERFACE
 (a)

common /c_StPrs /num_StPrs,StPrs_descriptor_adr1
 …
CALL add_object(num_StPrs,StPrb_descriptor_adr=StPrs_descriptor_adr, &
 StPrb_descriptor_adr_new=StPrs_descriptor_adr,StPrb_param=StPrb_param);
 (c)

55

Different relations and possible connections between separate/particular classes are shown
on figure 5. For example, object-descriptors from class of parallel tools (integrators, situation solvers)
are in connection with object-descriptors of initial value problems. Descriptors of integrators and
situation solvers are connected too.

Fig. 5. Semantic model presenting relations between different classes

Conclusion and future work

Only five user-defined types are developed on this stage and some number of simulation
problems could be defined. These types contain basic meta-data (address of the real data in the
storage and dimensions) about described from them object. Two of explained types - pool_par and
PoolThUnion describe abstract models for parallel calculations execution.

Developed types are used for development of new control of calculations and achieving a
flexibility and freedom about definition and execution of the simulation tasks in the frame of Program
System for Space Missions Simulation [5].

Reflection of relations and description of properties in given object field is the aim of the
development of above explained and other user-defined types in future.

Explained approach for development of object-classes is different from these one which are

used in object-oriented programing via fortran 95/2003.

References:

1. Atanassov, A., Program System for Space Missions Simulation – First Stages of Projecting and Realization,
In Proceedings of SES 2012, 2013, pp. 209-214.

2. Atanassov, A.M., Parallel, adaptive, multi-object trajectory integrator for space simulation applications.
Advances in Space Research 54, 2014, pp. 1581–1589.

3. Atanassov, A.M., Parallel Solving of Situational Problems for Space Mission Analysis and Design,
proceedings of 9th scientific conference Space Ecology Safety, 2013, 2014, pp. 283–288.

4. Atanassov, A.M., Method of Thread Management in a Multi-Pool of Threads Environments, proceedings of 9th
scientific conference Space Ecology Safety, 2014, 2015, pp. 241-246.

5. Atanassov, A.M., Approach and Development of Tools for Different Variants of Space Missions Simulation
Definition and Execution, proceedings of 9th scientific conference Space Ecology Safety, 2015, 2016,
pp.

Union of
threads’
pools
descriptors

Union of
threads’
pools
descriptors

Pool of
threads
descriptors

Pool of
threads
descriptors

Situation
problems
descriptors

Situation
problems
descriptors

Geometric
and physics
parameters
calculated
along the
trajectory-
descriptors

Geometric
and physics
parameters
calculated
along the
trajectory-
descriptors

IVPs
descriptors IVPs

descriptors

IVPs
descriptors

Pool of
threads
descriptors

Pool of
threads
descriptors

Pool of
threads
descriptors

common /c_AIs/num_AIs,AIs_descriptor_adr common /c_StPrs/num_StPrs,StPrs_descriptor_adr

common /c_UPths/num_UPths,UPths_descriptor_adr

common /c_IVPs/num_IVPs,IVPs_descriptor_adr1

common /c_TrPas/num_TrPas,TrPas_descriptor_adr

